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Abstract. We employ the Q-representation to study the non-classical correlations that are present from
below to above-threshold in the degenerate optical parametric oscillator. Our study shows that such corre-
lations are present just above threshold, in the regime in which stripe patterns are formed, but that they
also persist further above threshold in the presence of spatially disordered structures.

PACS. 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps – 42.50.Dv Nonclassical field
states; squeezed, antibunched, and sub-Poissonian states; operational definitions of the phase of the field;
phase measurements – 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos
and complexity, and optical spatio-temporal dynamics

1 Introduction

Quantum correlations in transverse spatial patterns of op-
tical systems have been much studied in recent years. This
is because of their fundamental relevance as a macroscopic
quantum phenomena in spatially extended systems, and
also because of possible applications for quantum image
processing [1–4]. In this context a prototype system stud-
ied is the Optical Parametric Oscillator (OPO). Pattern
formation in OPO was predicted long ago [5], and there
are recent experimental observations of spatial mode in-
teraction and pattern formation [6].

Quantum correlations in the OPO are often un-
derstood in terms of the basic process of emission of
twin signal photons in parametric down conversion of a
pump photon [7,8]. Below, but close to the threshold for
parametric oscillation, any critical transverse mode kc is
weakly damped. The ring with radius |kc| seen in the far
field is a noisy precursor [9] of the wave-number to be
selected above threshold. Spatial correlations have been
studied in this regime showing interesting non-classical be-
havior [11]. This is referred in the literature as a quantum
image [10]. In particular, the intensity difference between
any two opposite modes with radius |kc| in the far field
is sub-Poissonian. This is one manifestation of quantum
entanglement of the modes [12]. From a technical point
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of view, correlations in the regime below threshold can be
calculated analytically within linear approximations and
using the Wigner representation [13]. Above, but relatively
close to threshold, a stripe pattern appears (Sect. 3) due
to the interference of two selected signal modes of oppo-
site critical transverse wavenumber [14]. Again, this re-
sult can be understood as a macroscopic consequence of
the microscopic process of twin photon emission. Close to
threshold this phenomenon is studied with models which
consider only a small number of modes; only the pump
mode and the critical ones are considered. The calcula-
tion is based on a linearization approximation and the use
of the Wigner representation. At threshold or extremely
close to threshold, critical fluctuations would invalidate
a linearized calculation, but a few mode approximation,
such as those considered in [15], could be appropriate.

Quite a different situation exists when multimode non-
linear dynamics have to be considered. Some results have
been obtained in the context of multimode interaction
in linear approximations in other systems [16–18]. How-
ever, a full multimode nonlinear description is needed well
above threshold where the emission of the critical modes
necessarily stimulates spatial harmonics in both the pump
and the signal, and undamped modes associated to spa-
tial broken symmetries play an important role. This is
also the case in the convective regime caused by walk-
off, where a noise sustained pattern appears with a broad
(multimode) spectrum and amplified nonlinear fluctua-
tions [19,20]. In these situations two relevant questions
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have to be addressed. First, from the conceptual point
of view one might ask if the quantum correlations are de-
graded by the subsidiary nonlinear processes of multimode
competition. In particular, can the twin beams that ap-
pear close to threshold be incoherently depleted by other
processes? If, however, quantum effects persist, then the
simple explanation in terms of emission of pairs of twin
photons needs to be revised. Secondly, and from a tech-
nical point of view, new calculation techniques or approx-
imations that go beyond linearized approximations need
to be developed.

We have previously examined these questions using
a time-dependent parametric approximation [20,21]. We
concluded that quantum correlations were strongly sup-
pressed in the noise-dominated convective regime [20].
However, in the regime of absolute instability we found
that non-classical correlations between the ±kc signal
beams persists in spite of nonlinear interactions with the
pump and with higher order harmonics of the signal [21].
This is still true in cases in which the mean intensity of
the two critical signal beams is different because of walk-
off [21]. Two limitations of our time dependent paramet-
ric approximation, which is well suited in the convective
regime, are that fluctuations in the pump are neglected
and that its validity is restricted to values relatively close
to threshold.

As an alternative approach we propose, in this paper,
the use of the Q-representation and its associated nonlin-
ear Langevin equations for c-number complex fields. With
this method we can study quantum spatial correlations in
the DOPO without any linearization, few mode approxi-
mation or time-dependent parametric approximation, for
values of the pump less than twice its threshold value. In
particular we can reach high pump values for which the
stationary classical solution for the signal field is not a
stripe pattern, but rather a homogeneous state with one
of two preferred phases. Spatial coexistence of domains
of these two homogeneous solutions separated by domain
walls gives rise to spatially disordered patterns (seemingly
chaotic). These have a broad spectrum in the far field for
both the pump and the signal field. This structure can-
not be described, not even as a first approximation, as
the interference of two twin beams of opposite transverse
critical wavenumber. This is because of other cascading
processes coupling many different modes and frequencies.
Nevertheless, we find that any ±k pair of modes in the
far field that lie within the active range of the broad spec-
trum show non-classical correlations. This seems to indi-
cate that the basic process of parametric down conversion
is behind correlations found even in these very compli-
cated spatial structures.

The paper is organized as follows. The quantum for-
mulation of the problem is presented in Section 2, where
phase space methods are briefly compared (Sect. 2.1) and
Langevin equations for the Q-representation are intro-
duced (Sect. 2.2). In Section 3 we briefly review relevant
classical results concerning the instabilities to pattern for-
mation and to homogeneous solutions well above thresh-
old. Our general aim is to study the quantum properties of

the correlations in regimes that have not been previously
studied. These include the critical point in presence of a
multimode interaction (Sect. 4), and the above threshold
region in presence of complex patterns (Sect. 5). We find
signatures of entanglement of the beams in the presence
of stripes influenced by the presence of higher harmon-
ics (Sect. 5.1). We show that such entanglement is not
only associated with a stripe pattern, but it is present
also in spatially disordered structures (Sect. 5.2). Finally
Section 6 is devoted to concluding remarks.

2 Quantum formulation of DOPO dynamics

To describe the intracavity dynamics in a DOPO we in-
troduce the boson spatial modes Â0(x, t) and Â1(x, t),
respectively at the pump frequency 2ω, and signal fre-
quency ω, and satisfying standard equal-time commuta-
tion relations [13][

Âi(x, t), Â
†
j(x

′, t)
]

= δijδ(x − x′), i, j = 0, 1. (1)

Here x denotes the transverse coordinate(s). A Hamil-
tonian operator describes the interaction between these
modes in the non-linear medium. The intracavity fields
constitute an open device [22,23], modeled within a sta-
tistical approach in the Schrödinger picture by a Master
equation. In Section 2.1 we review the Master equation
of a DOPO. We then report on the possible phase-space
descriptions, introducing the Q-representation and the as-
sociated Langevin equations (Sect. 2.2).

2.1 Master equation and phase space descriptions

The intracavity dynamics of our open system is described
by a Master equation for the reduced density opera-
tor ρ̂ [22,23]:

∂ρ̂

∂t
=

1
i�

[Ĥ, ρ̂] + Λ̂ρ̂. (2)

We consider a plane one-sided cavity, hence the Liouvillian
accounting for dissipation through the partially reflecting
mirror is given by

Λ̂ρ̂ =
∑

i=0,1

γi

∫
d2x

{
[Âi(x), ρ̂Â†

i (x)] + [Âi(x)ρ̂, Â†
i (x)]

}
·

The Hamiltonian operator, expressed as a function of
fields operators Â0(x, t) and Â1(x, t), is:

Ĥ = Ĥ0 + Ĥint + Ĥext (3)

where [24]

Ĥ0 = �

∫
d2x

∑
i=0,1

[
γiÂ

†
i (x)(∆i − ai∇2)Âi(x)

]
(4)
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describes free propagation of fields in the cavity,

Ĥext = i�
∫

d2xE
[
Â†

0(x) − Â0(x)
]

(5)

is due to the interaction with the external pump E, which
we choose to be real, and

Ĥint = i�
g

2

∫
d2x

[
Â0(x)Â†2

1 (x) − Â†
0(x)Â2

1(x)
]

(6)

is the interaction term between first and second harmonic.
Density operators in state space can be mapped to

quasi-probability distribution densities on phase space.
These can be used to calculate ensemble averages of opera-
tors in defined orderings [25,26]. Using this “quantum-to-
classical” correspondence, equation (2) can be converted
into an equation of motion for a quasi-probability distribu-
tion in the phase-space of radiation fields αi(x), associated
with the operators Âi(x).

The presence of non-linearities leads to a functional
differential equation for the quasi-probability that is not
of the Fokker-Planck type, leading to difficulties in ob-
taining solutions [27]. The offending term for the system
of interest is Ĥint, which gives a functional term of the
form

[Â0(x)Â†2
1 (x) − h.c., ρ̂] ⇐⇒

(
sα0

δ2

δα2
1

+
1 − s2

4
δ3

δα2
1δα

∗
0

+
δ

δα0
α2

1 − 2α0α
∗
1

δ

δα1
+ c.c.

)
Ws. (7)

Here s denotes the operator ordering selected. We see that
third order derivatives appear in the temporal evolution of
the Wigner representation (s = 0). The approximate equa-
tions obtained simply dropping these third order terms
constitute the basis of stochastic electrodynamics [28]. This
approach works well in linear regimes, in which the Wigner
distribution satisfies a genuine Fokker-Planck equation. In
particular, in the DOPO below the threshold of signal gen-
eration the intensity of the signal is of the order of the
quantum noise, while the pump has a macroscopic mean
value, so that its fluctuations can be neglected. With the
assumption of a classical undepleted pump, the Hamilto-
nian that describes the quantum dynamics of the signal
is quadratic and the Langevin equation [27] – equivalent
to the Fokker Planck equation for Wigner representation
– can be analytically solved [13]. Recent investigations
have shown the limits of this stochastic electrodynamics
in reproducing quantum higher-order moments [29]. The
same type of approximation is generally possible above
threshold, linearizing around a pattern solution [16]. Due
to the in-homogeneity of the reference state, moreover,
only semi-analytical or numerical simulations can be pro-
vided. Above threshold great care has to be taken if the
system is translational invariant (flat mirrors and homo-
geneous transversal pump profile). The pattern solution
breaks the translational symmetry and therefore there is
a Goldstone mode which is neutrally stable [16]. Noise ex-
cites this mode, giving diffusion of the phase which fixes

the position of the pattern [16]. Moments involving such
big fluctuations cannot be correctly described within a lin-
earized treatment in the fields amplitudes. In particular,
such an approach leads to unphysically divergent quadra-
ture correlations, although correct results can be obtained
for the intensity correlations [18].

Another well-known quasi-probability is the P+ repre-
sentation [30], consisting in the extension of the normal
ordered P representation over a doubled phase space [31].
The P representation (s = 1 in Eq. (7)) suffers of nega-
tive diffusion in problems of interest, but the P+ generally
gives good results, with the advantage of the possibility
to obtain immediately also the moments outside the cav-
ity. However, in some systems this doubling phase-space
technique has shown divergent trajectories, as reviewed in
reference [32]. In particular, there are regimes in extended
systems – like the convective regime [20] – in which the
presence of large fluctuations around the unstable refer-
ence state would result in diverging trajectories in the P+

and alternative methods are needed.

In this paper we employ the Q-representation corre-
sponding to anti-normal ordering of field operators. The
most important property of this representation is that it
satisfies the requirements for a true probability distribu-
tion. In fact the Q-representation may be defined as the
diagonal matrix elements of the density operator in the
space of coherent states

Q(α0, α1) =
1
π
〈α0, α1|ρ̂|α0, α1〉 (8)

and so is both positive and bounded [26]. Due to the over
completeness of the coherent states ensemble, the def-
inition (8) uniquely determines the density operator ρ̂.
Physically this representation, resulting from a Gaussian
convolution of the Wigner representation, corresponds to
simultaneous measurements of orthogonal quadratures, as
limited by the Heisenberg principle, in a eight-port homo-
dyne detector [33]. From equation (7) (with s = −1) we
observe that the Q-representation suffers of negative diffu-
sion. Unlike the Wigner function, however, the Q-function
is always positive and well-behaved. The possibility to ob-
tain a positive solution in presence of a negative diffu-
sion [34] lies in the presence of a restricted ensemble of ini-
tial conditions, that cannot be arbitrarily narrow. In other
words, not all mathematical forms for the Q-function cor-
respond to physical states. The evolution of a physical
state – corresponding to an hermitian density operator –
in the Q-representation will always be positive [26,35]. We
should note that aQ-representation with a doubled phase-
space has been proposed in order to deal with negative
diffusion [36]. This has been shown to give good results in
some non-linear quantum systems [37].

In the next section we investigate the possibility to
use the Q-representation for devices consisting on a cav-
ity filled with a χ2 medium, as in the OPO and Second
Harmonic Generation (SHG).
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2.2 Langevin equations in Q-representation

The evolution equation of the functional Q for our model
(described above) is:

∂Q(α0, α1)
∂t

=
∫

d2x
{
−

(
δ

δα0(x)
V0 +

δ

δα1(x)
V1 + c.c.

)

+
∫

d2x′
[
2γ0

δ2

δα0(x)δα∗
0(x′)

+ 2γ1
δ2

δα1(x)δα∗
1(x′)

+
1
2

(
−gα0

δ2

δα1(x)δα1(x′)
+ c.c.

)]}
Q(α0, α1), (9)

where the drift terms are

V0 = −γ0[(1 + i∆0) − ia0∇2]α0(x, t) − g

2
α2

1(x, t) + E

V1 = −γ1[(1 + i∆1) − ia1∇2]α1(x, t) + gα0(x, t)α∗
1(x, t).

If the diffusion term is positive then our evolution equa-
tion is a bona-fide Fokker-Planck equation. In the other
case this equation doesn’t describe an ordinary diffusion
process. For equation (9) the diffusion term is positive if

|α0(x, t)| < 2γ1

g
· (10)

The modulus of the stationary field at threshold takes the
value |Athr

0 | = γ1/g (see Sect. 3). This means that the
condition (10) corresponds to pump trajectories taking
values that are less than twice the threshold value. Stay-
ing in a region far from the limit (10) – we are considering
Ast

0 ≤ 1.5Athr
0 – an extremely large fluctuation in a trajec-

tory would be necessary in order to lose the positiveness of
the diffusion. Clearly these trajectories have a negligible
probability to appear, and never appeared in our simula-
tions. For these reasons, the approximation we propose is
to study Langevin equations related to the Fokker-Planck
equation given by (9) and (10), neglecting any trajecto-
ries that would make negative the diffusion term. Clearly
the condition (10) does not depend on the frequency at
which the system is pumped. For this reason the method
is suitable, and has been already successfully used, to de-
scribe non-linear fluctuations in stripe patterns in SHG in
a regime of pump values limited by equation (10) [38].

From equations (9, 10), with the scaling (D is the
transversal dimensionality of the system)

γ0 = γ1 = γ, a0 = a1/2 = a, (11)

t′ = γt, x′ =
x√
a
,

A′
i =

g

γ
Ai, E′ =

g

γ2
E, ε′i =

g

γ3/2aD/4
εi,

omitting the primes, we obtain the equations:

∂tα0(x, t) = − [
(1 + i∆0) − i∇2

]
α0(x, t) + E

−1
2
α2

1(x, t) +

√
2
a

g

γ
ξ0(x, t) (12)

∂tα1(x, t) = − [
(1 + i∆1) − 2i∇2

]
α1(x, t)

+α0(x, t)α∗
1(x, t) +

√
2
a

g

γ
ξ1(x, t). (13)

The condition (10) in the new variables is

|α0(x, t)| < 2. (14)

We solve these Langevin equations by numerical simula-
tion, neglecting any trajectories that do not satisfy the
condition (14), should these occur. ξ0 is a white Gaussian
noise with non-vanishing moment:

〈ξ0(x, t)ξ∗0 (x′, t′)〉 = δ(x − x′)(t− t′). (15)

The signal noise ξ1 results to be phase sensitive, due to the
presence of diagonal terms in the diffusion matrix of equa-
tion (9). Moreover this noise is multiplicative, depending
on the value of the pump field. However due to the form
of Ĥ (quadratic in Â1 and linear in Â0), these equations
have the same formal expression in the Ito or Stratonovich
interpretations [27].

The phase sensitive multiplicative noise ξ1(x, t) can be
written as

ξ1(x, t) =

[
−α0I(x, t)

2
√

2 + α0R(x, t)
+

i
2

√
2 + α0R(x, t)

]
φ(x, t)

+

√
1 − |α0(x,t)|2

4

2 + α0R(x, t)
ψ(x, t) (16)

with α0 = α0R + iα0I and φ, ψ uncorrelated real white
noises in space and time, with variances one. Actually, the
diffusion matrix of a Fokker-Plank equation fix only three
of the four degrees of freedom in the choice of the real
and imaginary parts of the noise term ξ1; this depends on
the multiplicity of Langevin processes associated with the
same Fokker-Planck equation [27]. Hence equation (16)
corresponds to a particular choice among several possible
representations [39].

In the next sections we present the numerical results
obtained by simulating equations (12, 13) with the same
integration method of references [16,38]. In particular we
consider one transversal dimension (D = 1) and parame-
ters:

∆0 = 0, ∆1 = −0.18,
g√
aγ

= 10−4 (17)

with a system size of four critical wavelengths L = 4λc,
with λc = 2π/kc (see Sect. 3).

Equations (12, 13) are suitable for the study of quan-
tum fluctuations in different regimes – discussed in Sec-
tion 3 – from the linear regime below threshold to the
multimode regimes quite above threshold. In Section 4 we
present calculations of quantum correlations below thresh-
old and at the critical point, comparing with analytical
results in the linear approximation. In Section 5 we con-
sider the above threshold regime, in the situation of reg-
ular stripe pattern formation and also when disordered
structures are formed (see Fig. 1).

3 Pattern formation in OPO

We first review the patterns that arise in the OPO in the
classical limit. The phase matched DOPO, where both
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E = 0.999 E = 1 E = 1.1 E = 1.5

NF FF NF FF NF FF NF FF

Fig. 1. Spatiotemporal evolution of the real part of the near field (NF) and of the intensity of the far field (FF) (in log scale), for
different values of the pump E = 0.999, 1, 1.1, 1.5. The FF intensity is defined as |αi(k)|2, where αi(k) is the Fourier transform
of the near field αi(x). The horizontal coordinate is the transversal position (x in NF and k in FF) describes by 64 points, and
the vertical one is the time interval 107 (in γ units), using a discretization time step of ∆t = 0.01. The initial condition for the
signal is α1(x, 0) = 10−5(ε(x) + 10 sin(kcx)) with ε(x) Gaussian random numbers of variance one.

pump A0 and signal A1 fields are resonated, is described
classically by equations identical to equations (12, 13) but
neglecting the noise terms. The classical equations have a
trivial homogeneous solution

Ast
1 = 0, Ast

0 =
E

1 + i∆0
· (18)

A linear stability analysis around this solution gives the
following dispersion relation for the growth of the signal
field perturbations with wave vector k (the pump field A0

is always stable) [5]

λ1(k) = −1 ±
√
|Ast

0 |2 − (∆1 + 2k2). (19)

For negative signal detunings, the zero homogeneous so-
lution becomes unstable at E = Ec =

√
1 +∆2

0. The
perturbations with maximum growth rate are those with
wave number |kc| =

√−∆1/2, and a pattern with this
wave number is formed at threshold [5]. For positive sig-
nal detunings the zero homogeneous solution is stable for
E < Ec =

√
(1 +∆2

0)(1 +∆2
1). In this case the instabil-

ity takes place at zero wave number leading to a non zero
homogeneous solution [40]

Ast
1 = ±

√
E|Ast

1 |2
(1 + i∆0)(1 + i∆1) + |Ast

1 |2
(20)

Ast
0 =

E(1 + i∆1)
(1 + i∆0)(1 + i∆1) + |Ast

1 |2
· (21)

There are two equivalent solutions for the signal field with
a π phase difference.

In this paper we will consider the case of zero pump
detuning (∆0 = 0) and negative signal detuning (∆1 < 0),
in which stripe pattern arises at threshold (Ec = 1). In-
creasing further the pump the nonzero homogeneous so-
lutions (20) become stable. In fact, we observe they are
stable for pump values around E = 1.1. This is lower
than the value at which the stripe pattern becomes lin-
early unstable [41,42]. Numerical studies in this regime
find multistability between the stripe pattern, the two

nonzero homogeneous solutions and several irregular spa-
tially modulated solutions. The latter are formed by fronts
with oscillatory tails connecting the two equivalent homo-
geneous solutions. In systems with two spatial dimensions,
there are also coexisting labyrinthine patterns. In this case
(D = 2) both the irregular spatially modulated solutions
and the labyrinthine patterns cease to exist at the modu-
lational instability of a flat front connecting the two homo-
geneous solutions [42,43]. Here we consider systems with
only one spatial dimension for which such an instability
does not exist. This means that the regime of multista-
bility in parameter space is much larger. The irregular
spatially modulated solutions found in this system are an
example of frozen chaos as described in reference [44]. In
that case the interaction of two distant fronts can be de-
scribed by a potential with several wells which become
progressively deeper as the distances between the fronts
decreases. The OPO cannot be described in terms of such
potentials, but numerical studies reveal equilibrium dis-
tances whenever the maxima (or the minima) of the local
oscillations of the front overlap with each other [41,42].

4 Quantum correlations below
and at threshold

The spatiotemporal dynamics of the signal field is shown
in Figure 1 for two relevant values of the pump, below but
near to threshold (quantum images regime), E = 0.999
and at threshold (E = 1). The far field (FF) shows strong
fluctuations dominated by the critical wave-vector: in Sec-
tions 4.1 and 4.2 we discuss the quadratures and intensity
quantum correlations of these modes.

4.1 Quadrature correlations

The direction in which quadrature squeezing appears is
determined by the eigenfunction V±(k,−k) of the linear
problem ∂tV±(k,−k) = λ±(k)V±(k,−k), as reported in
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reference [20]:

V±(k,−k) = eiΦ±δA1(k) ± δA∗
1(−k) (22)

eiΦ±(k) = ∓ i∆1 + 2ik2 ∓ √|Ast
0 |2 − (∆1 + 2k2)2

Ast
0

·

The solution V+(k,−k) gives the direction of amplifica-
tion of fluctuations, while fluctuations are damped for
V−(k,−k), giving rise to quadrature squeezing. In partic-
ular, for the critical wave-vector kc and for our choice of
parameter (real Ast

0 ) we obtain V±(kc,−kc) = δA1(kc) ±
δA∗

1(−kc). Therefore, the largest squeezing at threshold
will be in the difference of real parts and the sum of imag-
inary parts of the field for wave-numbers kc and −kc.

We define the real quadrature operator:

X̂(k) = Â1(k) + Â†
1(k) (23)

and the quadrature superpositions

X̂−(k) = X̂(k) − X̂(−k) (24)

X̂+(k) = X̂(k) + X̂(−k), (25)

corresponding, respectively, to damped and undamped
quantities at threshold for k = kc.

Below threshold, within a linearization approxima-
tion [13], the normal-ordered variances normalized to the
shot noise (NX) [45] are:

〈: (X̂−(kc))2 :〉
NX

=
−E

1 + E
(26)

〈: (X̂+(kc))2 :〉
NX

=
E

1 − E
· (27)

These quantities coincide with the variances since the
mean values are zero: 〈X̂±(k)〉 = 0. The normal order-
ing allows us to immediately identify non-classical fea-
tures associated with squeezing such as negative variances.
Equation (26) shows an increasing degree of squeezing,
approaching the value −0.5 at threshold. In Figure 2 the-
oretical predictions and numerical results are shown to
be in good agreement, confirming the validity of equa-
tions (12, 13) below threshold. On the other hand equa-
tion (27) is always positive indicating that the the fluctua-
tions in the direction of instability are essentially classical
and larger than those found for a coherent state. In Fig-
ure 3 we show the agreement between theoretical predic-
tions and numerical results for the undamped quadrature,
even as close as 1� to threshold. The limits of the linear
treatment, discussed above, are now evident in the diver-
gence of equation (27) for E → 1. In contrast, numerical
simulation of the nonlinear equations (12, 13) gives the
expected saturation at the critical point, at a value which
depends on the noise level.

4.2 Intensity correlations

We can find non-classical features in the intensities of the
twin beams by evaluating the normal-ordered variance in

Fig. 2. Normal ordered variance of the damped quadrature
X̂−(kc) normalized to shot noise: diamonds are results ob-
tained by numerical simulation, while the continuous line cor-
responds to the analytical expression equation (26). For any
trajectory at given pump intensity, we average during a time
of 107, integrating with a time discretization of 10−3 (with time
scaled as in Eq. (11)).

Fig. 3. Variance of the undamped quadrature X̂+(kc): the
diamonds are results obtained with numerical simulation, while
the continuous line corresponds to the analytical expression
(Eq. (27)). At the last point, corresponding to E = 1, the linear
treatment gives an infinite variance (the asymptotic behavior
is represented by a dashed line), while our non-linear treatment
gives the expected saturation.

the difference of the two intensities:

V(k) =
〈: [δN̂1(k) − δN̂1(−k)]2 :〉

NN (k)
, (28)

normalized to the corresponding shot noise value NN (k).
This value is proportional to the sum of the intensities
of the two beams with wavevectors ±k. Negative values
of V indicate sub-Poissonian statistics for the intensity
difference of the two signal beams at ±k [21]. In a lin-
ear analytical treatment below threshold V(k) = −0.5,
independently of the pump intensity and of the wave-
vector [13,21]. In other words the normalized intensity
correlations, equation (28), do not show a non-classical
behavior which is stronger for the critical wave vector or
at the critical point. This is in contrast with the behavior
of the quadratures correlations equations (26, 27). Nev-
ertheless, the critical conditions are of significant interest
because of presence of higher intensities.

The numerical expression of V(k) for different spatial
modes (0 < k ≤ 5kc) is compared, in Figure 4, with the
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Fig. 4. Analytical (continuous line) and numerical (dia-
monds) twin beams correlations V(k) (Eq. (28)) below thresh-
old (E = 0.99). The insert shows the mean intensity of the
signal, with a maximum at kc = 0.3.

Fig. 5. Variance V(kc) at the critical wave-vector (kc = 0.3),
increasing the pump intensity from below to above threshold
(Ec = 1). The diamonds are numerical results and the contin-
uous line is the analytical value obtained by linearizing below
threshold.

analytical value −0.5 for pump E = 0.99, showing good
agreement. Small deviations for large wavevectors k can
appear numerically due to the smallness of the shot noise
to which the variance is normalized; NN is proportional
to the mean intensity of the field, shown also in Figure 4.

In Figure 5 we plot the variance V(kc) at the critical
wave-vector as a function of the pump E: We obtain good
agreement with analytical predictions below threshold.

5 Quantum correlations above threshold

The non-linear equations in the Q-representation are used
here to study the regime of pattern formation above
threshold. These equations improve the time-dependent
parametric approximation introduced in reference [20],
which is well suited to study the convective regime (in
presence of walk-off) or the instability point, because the
pump fluctuations are disregarded with respect to the sig-
nal ones. Equations (12, 13) are valid in a wide region
above threshold, and give a complete description of the
pump fluctuations.

Slightly above the threshold (E = 1.02) the variance
of the quadratures superposition equation (24) becomes

Fig. 6. (a) Trajectory in the phase space of α1(kc) during 107

scaled units for E = 1.02. (b) Phase sum 〈θ++θ−〉 (in radians)
increasing the pump intensity.

classical. To understand how the mode dynamics changes
when going above threshold, we recall that below thresh-
old the trajectory α1(kc, t) occupies a circular region cen-
tered in zero, in the phase space given by its real and
imaginary part. Above threshold the mean amplitude has
a macroscopic value increasing with the pump intensity
and the distribution of fluctuations in phase and intensity
quadratures is rather different, as shown in Figure 6a. A
trajectory for a mode during a larger time would describe
a circle in phase space.

The origin of these large fluctuations in the phase
quadrature is well known in the theory of single
transverse-mode non-degenerate parametric oscillators
(NDOPO) [46]. Due to the diffusion of the difference of
the signal and idler phases, the above threshold solution
is not stable, and “cannot be analyzed correctly by the as-
sumption of small fluctuations and methods of lineariza-
tion” [46]. The situation is similar to that of the laser
above threshold, for which a correct analysis is performed
using intensity and phase variables and not linearizing in
the diffusing (phase) variable. In reference [47] an exact
steady-state Wigner function is calculated in the single
transverse-mode NDOPO by adiabatically eliminating the
pump. The phase diffusion in a mode is evident in the ra-
dial symmetry of this distribution.

The single transverse-mode NDOPO is equivalent to a
three mode model, describing the extended DOPO near
threshold [14] through the relevant fields α1(±kc) and
α0(0) [48]. The stationary signal is

α1(x, t) = α1(kc)eikcx + α1(−kc)e−ikcx

= 2|α1(kc)|ei
θ++θ−

2 cos
(
kcx+

θ+ − θ−
2

)
, (29)

with α1(±kc) = |α1(±kc)|eiθ± . We recognize the effect of
the phases θ± in the near field. The sum of these phases
fixes the global phase of the signal, locked to the pump,
while the arbitrary phase difference fixes the spatial posi-
tion of the stripe pattern. In continuous systems, where all
modes are taken into account, the diffusion of the phase
difference can be interpreted as the action of the Goldstone
mode [16], that is neutrally stable, giving a continuous
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Fig. 7. Snapshot of the real part of the near fields (NF) and
intensity (log scale) of the far fields (FF) for both the pump
and the signal. The grey plots are obtained for a pump value
E = 1.02 and the black ones (in continuous or dotted lines) for
E = 1.1.

translation of the pattern. This is particularly evident in
Figure 1 at threshold (E = 1).

In a linear treatment below threshold, the fluctuations
of 〈θ+ + θ−〉 have zero average and are damped (with
∆0 = 0). Increasing the pump we always observe small
fluctuations, but the average changes. Figure 6b shows
that the mean value 〈θ++θ−〉 increases from its zero value
with the distance above threshold. This is a non-linear ef-
fect due to the feedback of the signal on the pump. Above
threshold the average of the non-linear term in the pump
equation is not zero, so the pump is no longer real and this
induces a phase rotation in the signal. Therefore it should
be expected that the strongest quadrature squeezing will
be eventually found for a local oscillator phase that de-
pends on this phase rotation. Here, however, we will re-
strict our attention to the non-classical features associated
with intensity correlations. In fact this corresponds to a
measure of quadrature squeezing as they result from the
interference of a local oscillator given by the mean signal
field with the squeezed fluctuations of the same mode.

5.1 Intensity correlations in stripe patterns

The stripe pattern formed above threshold is due to the in-
terference of signal beams with opposite critical wavevec-
tors. Momentum conservation leads to the entanglement
between these signal beams [7,14,21]. This gives non-
classical intensity correlations characterized by V = −0.5.

Increasing the pump intensity we observe excitation
of harmonics of the critical wavenumber (compare far
field (FF) in Figure 1 for E = 1 and for E = 1.1). In Fig-
ure 7 we show the real part of the near field (NF) pattern
in the pump and in the signal and the corresponding FF
intensities for pumps E = 1.02 and E = 1.1. We observe

Fig. 8. Twin beams correlations V(k) above threshold, for
E = 1.02 (grey) and for E = 1.1 (black).

that the odd harmonics are excited in the signal and the
even ones in the pump mode, with an exponential decay of
energy at higher wavevector modes. The presence of a mul-
timode interaction means that the momentum conserva-
tion no longer constrains the intensities of the twin beams,
as it does below and at threshold. However, as shown in
reference [21], we do observe in this regime the symmetry
〈N1(k)〉 = 〈N1(−k)〉 in intensity averages and quantum
correlations between the critical modes survive, as shown
in Figure 5 for 1 < E < 1.1. The secondary process of up-
conversion of pairs of signal photons +kc (or equivalently
−kc) to form pump photons +2kc (−2kc) does not seem
to destroy the quantum correlations between the signal
“twin” photons (+kc and −kc). In principle this process
gives an incoherent depletion of the “twin” beams, but
probably due to the smallness of this secondary effect,
the quantum correlations associated with the fundamen-
tal process survive.

The spatial spectrum of the intensity variance V is
plotted in Figure 8. We observe that at 2% above thresh-
old the spectrum is similar to the spectrum below thresh-
old (compare with Fig. 4). A reduction of the squeezing
is observed (peak at k = 3kc = 0.9 in Fig. 8), however,
corresponding to the appearance of the third harmonic.
Increasing the pump to 10% above threshold we observe
an enhancement of the spectral bandwidth in which this
reduction of squeezing appears. The third harmonic in the
signal is involved in at least two important processes: the
down-conversion of the homogeneous pump into twin pho-
tons +3kc and −3kc and the secondary process of down-
conversion of the second harmonics ±2kc of the pump into
opposite signal photons ±3kc and ∓kc. We note that as
the Hamiltonian operator is Hermitian, the opposite (up-
conversion) processes are also allowed. The observed re-
duction of squeezing can be interpreted as a signature
of the mentioned secondary process, in which the pairs
signal +3kc and −3kc photons are incoherently (not si-
multaneously) generated and destroyed. In other words,
signal modes are depleted independently, taking part in
different cascading processes and generating harmonics.
The entanglement should be preserved in opposite signal
modes for which the fundamental down-conversion process
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Fig. 9. Snapshots of the real part of the NF and intensity (log
scale) of the FF for the pump (thin line) and the signal (thick
line), for E = 1.5, starting from a rolls pattern (a) and from a
step function with values −1 and +1 (b).

prevails. We have confirmed that opposite spatial modes
in the pump field do not show quantum correlations.

We note that the variances V obtained with the Q-
representation – after reordering – are in good agreement
with the corresponding quantities calculated with the time
dependent parametric approximation in the Wigner rep-
resentation in reference [21].

5.2 Intensity correlations in spatially disordered
structures

With increasing pump intensity, a transition from a mod-
ulated pattern to homogeneous solutions takes place [49].
Due to the bistability in this regime, different homoge-
neous solutions can be selected in separated spatial do-
mains (see Fig. 1 for E = 1.5). All solutions presented
in Figure 1 are obtained starting from a modulated initial
condition at kc. Therefore we are stimulating, with a par-
ticular initial configuration, the shape of the final struc-
ture. In Figure 9a we show the stationary configuration for
E = 1.5, in which the most excited mode is kc. The disor-
dered character of the structure gives rise to a broad spec-
trum, in which the other dominant modes are not harmon-
ics of kc. The most intense signal modes combine to form
pump modes: for example in Figure 9a the signal modes
kc = 4∆k = 0.3 and 9∆k = 0.675 give the pump mode
13∆k = 0.975 [50]. The stationary disordered structure
shows the same reflection symmetry 〈N1(k)〉 = 〈N1(−k)〉,
of the stripe pattern considered in Section 5.1.

Studying the properties of the quantum fluctuations in
this regime, we observe non-classical correlations between
the two signal “twin” beams with critical wave-vectors,
also in these spatially disordered structures (see Fig. 5
for 1.2 ≤ E ≤ 1.5). This result does not depend on mo-
mentum conservation or on the presence of a regular pat-

Fig. 10. Twin beams correlations V(k) for pump E = 1.5. The
grey (black) line is the spectrum V(k) for the pattern shown in
Figure 9a (Fig. 9b). The grey dotted line is obtained consid-
ering a system with the same size (L = 4λc) but with a finer
discretization (128 instead of 64 points), starting from a stripe
configuration of critical wave-length. In this way we can see the
asymptotic behavior of the spectrum for large wavevectors. For
small wave-vectors the results are in good agreement with the
simulation using 64 points.

tern. We have also considered the entanglement properties
of modes different from the critical one. In Figure 10 we
show the spatial spectrum of the variance V (grey line).
As in the case of a regular stripe pattern, analyzed in
the previous section, we continue to find quantum cor-
related twin beams. However there are some interesting
differences. The peak in V now corresponds to a strongly
depleted (low mean intensity) signal mode for k = 0.975.
This contrasts with the previous case, where k = 3kc was
an excited mode. The most interesting feature is the ap-
pearance of a bandwidth of “twin” beams, where the sig-
nal field is intense; the correlations become classical for big
wave-vectors (k � 1), where the signal is depleted more
than the pump field, reaching asymptotically the level of
coherent states (see dotted grey line in Fig. 10). In con-
clusion, the “twin”-beams quantum correlations persist in
disordered structures. This signature of the fundamental
down-conversion process is preserved throughout the re-
gion of intense signal modes.

The demanding question is how the spectrum of the
variance V is influenced by the shape of the selected
spatial structure. In this regime no special character
is associated with the critical wave-length periodicity.
Therefore we consider a stationary state of two domains,
obtained from an initial step condition (Fig. 9b). Also in
this case, with a very different stationary state, we ob-
serve non-classical intensity correlations in the bandwidth
0 < k � 1, as shown in Figure 10 (black line). In this case
no peaks appear, suggesting that the presence of modes
with reduced squeezing (as the peak for k = 0.975 ob-
served in the previous structure) depends on the selected
spatial structure.

The key point is the relative importance of the funda-
mental coherent process of twin photon down-conversion,
and other incoherent cascading processes, which depends
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Fig. 11. (a) Twin beams correlations V(k) for pump E = 1.3,
corresponding to different spatial structures, obtained starting
from a step function (black line), from noise (grey line) and
from a stripe pattern with critical wave-length (dotted line).
Mean FF intensity in the pump (〈N0〉) (b) and in the signal
(〈N1〉) fields (c), for the same three spatial configurations.

on the spatial configuration chosen by the system. To give
more evidence of this statement, we study the variance
V in three different spatial configurations, obtained for
E = 1.3, starting the simulations from noise, from rolls (as
in Fig. 9a) and from a step function (as in Fig. 9b). In Fig-
ure 11 we show the spectral variances (a) and the mean FF
intensity (b, c). The domain configurations obtained star-
ing from noise and from a step function give overlapping
smooth variances, while two peaks appear when starting
from rolls . Also in this case the peaks appear associated
with strongly depleted signal modes with low intensities,
and can be in different positions depending on the selected
spatial structure. The bandwidth of non-classical variance
V seems to be a general feature, almost independent of
the structure selected. It corresponds to the FF region of
intense tilted signal beams.

6 Conclusions

Non-linear optical systems present a wealth of physical
phenomena including self-organizing spatial patterns and
quantum correlations. Commonly employed methods to
study these phenomena include the use of the positive P -
representation and the Wigner representation with third
order derivatives neglected. Here we have investigated the
use of the Q-representation for studying quantum correla-
tions in the DOPO at and above threshold. Positive diffu-
sion is not guaranteed with the Q-representation and this
can lead to problems with divergent trajectories. For the

DOPO, however, only positive diffusion occurs unless the
fluctuations are strong enough to push the pump field up
to twice the threshold value. This never occurred in our
simulations and we have not attempted to calculate the
effects of such highly unlikely trajectories on our ensem-
bles [51].

Below threshold entanglement in quadratures and non-
classical intensity correlations are obtained, in agreement
with linear analytical results. At threshold, a pair of quan-
tum correlated twin beams is generated. These beams have
wavevectors±kc, corresponding to the critical wavelength.
The quantum correlations are a natural consequence of the
fundamental microscopic process in which a single pump
photon is converted into a pair of signal photons. As we
move further above threshold the twin beams can recom-
bine to generate new pump photons. The combination of
a +kc and a −kc photon regenerates one of the original
pump photons. The combination of a pair of +kc pho-
tons or a pair of −kc photons, however, is a new pro-
cess and introduces higher harmonics in the pump and
thence in the the signal. Such processes can also degrade,
but not completely suppress, the quantum correlations in
some signal modes. This is a signature of the incoherent
depletion of those modes. Yet further above threshold we
enter a regime of spatially disordered structures. Remark-
ably, quantum correlations persist even in this regime, in
the bandwidth of intense signal modes, where they take a
form that depends on the spatial pattern that is generated.
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